Yes, that is correct. I am not gone crazy... but it is indeed true!!
See a movie clip of Electron showing how an electron rides on a light wave after just having been pulled away from an atom! This is the first time an electron has ever been filmed, and the results are presented in the latest issue of Physical Review Letters.
<~ Electrons around an Atom
Previously it has been impossible to photograph electrons since their extremely high velocities have produced blurry pictures. In order to capture these rapid events, extremely short flashes of light are necessary, but such flashes were not previously available. With the use of a newly developed technology for generating short pulses from intense laser light, so-called attosecond pulses, scientists at the Lund University Faculty of Engineering in Sweden have managed to capture the electron motion for the first time.
Watch the video here:
You may also see the related PDF article in Physical Review Letters
Do you know that it takes about 150 attoseconds for an electron to circle the nucleus of an atom! An attosecond is 10-18 seconds long, or, expressed in another way: an attosecond is related to a second as a second is related to the age of the universe! With the aid of another laser these scientists have moreover succeeded in guiding the motion of the electron so that they can capture a collision between an electron and an atom on film.
<~ A Nitrogen atom with Electrons
These scientists also hope to find out more about what happens with the rest of the atom when an inner electron leaves it, for instance how and when the other electrons fill in the gap that is created.
Note that the length of the film corresponds to a single oscillation of the light, but the speed has then been ratcheted down considerably so that we can watch it. Please also see that the filmed sequence shows the energy distribution of the electron and is therefore not a film in the usual sense. :)
Previously scientists have studied the movements of electrons using indirect methods, such as by metering their spectrum. With these methods it has only been possible to measure the result of an electron’s movement, whereas now we have the opportunity to monitor the entire event. By taking several pictures of exactly the same moment in the process, it’s possible to create stronger, but still sharp, images.
<~ Digital Stroboscope
A precondition is for the process to be repeated in an identical manner, which is the case regarding the movement of an electron in a ray of light. They started with a so-called Stroboscope.
A stroboscope enables us to ‘freeze’ a periodic movement, like capturing a hummingbird flapping its wings. You then take several pictures when the wings are in the same position, such as at the top, and the picture will turn out clear, despite the rapid motion.
For more information about the research of Attosecond Physics, visit the University's web site HERE!
Sunday, June 22, 2008
Electrons of an Atom captured in a Camera!
Posted by Adi at 2:45:00 AM
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment